about Grigoris Maravelias
New paper on the circumstellar environment of galactic B[e] supergiants

New paper on the circumstellar environment of galactic B[e] supergiants

Finally, after some years of work, it has been accepted for publication in MNRAS.

Resolving the kinematics of the disks around Galactic B[e] supergiants

Grigoris Maravelias, Michaela Kraus, Lydia S. Cidale, Marcelo Borges Fernandes, Maria L. Arias, Michel Curé, Georgios Vasilopoulos

B[e] Supergiants are luminous evolved massive stars. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dusty regions usually found in rings or disk-like structures. For a better comprehension of the mechanisms behind the formation of these rings, detailed knowledge about their structure and dynamics is essential. To address that, we obtained high-resolution optical and near-infrared spectra for 8 selected Galactic B[e] Supergiants, for which CO emission has been detected. Assuming Keplerian rotation for the disk, we combine the kinematics obtained from the CO bands in the near-IR with those obtained by fitting the forbidden emission [OI] λ5577, [OI] λλ6300,6363, and [CaII] λλ7291,7323 lines in the optical to probe the disk structure. We find that the emission originates from multiple ring structures around all B[e] Supergiants, with each one of them displaying a unique combination of rings regardless of whether the object is part of a binary system. The confirmed binaries display spectroscopic variations of their line intensities and profiles as well as photometric variability, whereas the ring structures around the single stars are stable.

arXiv.org: 1807.00796

Figure 12 from the paper: A cartoon illustration of the disk-structures as derived from our analysis. We represent the [OI] λ5577 line as *[OI]*, the [OI] λλ6300, 6363 doublet as [OI], and the [CaII] λλ7291, 7323 as [CaII]. The arrows above the rings symbolize the typical ring-widths and are given in km/s. (For more details on the data used and references see Table 3. Note that the relative structures and sizes are not in scale.

Leave a Reply

Your email address will not be published. Required fields are marked *