Archive for 2020

Evolved Massive Stars at Low-metallicity III. A Source Catalog for the Large Magellanic Cloud

Ming Yang, Alceste Z. Bonanos, Biwei Jiang, Jian Gao, Panagiotis Gavras, Grigoris Maravelias, Shu Wang, Xiao-Dian Chen, Man I Lam, Yi Ren, Frank Tramper, Zoi T. Spetsieri

We present a clean, magnitude-limited (IRAC1 or WISE115.0 mag) multiwavelength source catalog for the LMC. The catalog was built upon crossmatching (1′′) and deblending (3′′) between the SEIP source list and Gaia DR2, with strict constraints on the Gaia astrometric solution to remove the foreground contamination. The catalog contains 197,004 targets in 52 different bands including 2 ultraviolet, 21 optical, and 29 infrared bands. Additional information about radial velocities and spectral/photometric classifications were collected from the literature. The bright end of our sample is mostly comprised of blue helium-burning stars (BHeBs) and red HeBs with inevitable contamination of main sequence stars at the blue end. After applying modified magnitude and color cuts based on previous studies, we identify and rank 2,974 RSG, 508 YSG, and 4,786 BSG candidates in the LMC in six CMDs. The comparison between the CMDs of the LMC and SMC indicates that the most distinct difference appears at the bright red end of the optical and near-infrared CMDs, where the cool evolved stars (e.g., RSGs, AGB, and RGs) are located, which is likely due to the effect of metallicity and SFH. Further quantitative comparison of colors of massive star candidates in equal absolute magnitude bins suggests that, there is basically no difference for the BSG candidates, but large discrepancy for the RSG candidates as LMC targets are redder than the SMC ones, which may be due to the combined effect of metallicity on both spectral type and mass-loss rate, and also the age effect. The Teff of massive star populations are also derived from reddening-free color of (JKS)0. The Teff ranges are 3500<Teff<5000 K for RSG population, 5000<Teff<8000 K for YSG population, and Teff>8000 K for BSG population, with larger uncertainties towards the hotter stars.
arXiv.org: 2012.08623

Creating OSIRIS mosaic images

Posted September 15, 2020 By grigoris

To properly process data (either imaging or multi-slit spectra) from the OSIRIS instrument at GTC you need first to convert the original data to single images. The raw fits data contain two extensions corresponding to the two CCD sensors. To combine these into a single 2110 X 2051 pixels image (including the gap between the sensors) they provide with a convenient IRAF script called Mosaic Tool. This takes into account more than simply adding the extensions. As written in the ReadmeFirst.txt file:

(i) corrects the input OSIRIS pre-image for overscan to provide a uniform background, (ii) executes the mosaic assembly according to the rotation/traslation parameters obtained from the MD Polynomial Manual (current version: V5; see contents of the attached MD_polynomials.pdf file) on a new created image, (iii) copies the zero extension of the input image in the new one, and (iv) updates the WCS keywords. Such updating consists in switch the input reference pixel (CRPIX1, CRPIX2) to the center of the mosaic (see MD_polynomials.pdf, p.12) and calculate the celestial coordinates (CRVAL1, CRVAL2) corresponding to the new reference, based on the original WCS parameters. Hence, the correction of the astrometric solution is the same of the input image.

So it does quite a work! To run it you have to start IRAF, define the task and apply it to an raw image:

-->task $mosaic_2x2=mosaic_2x2_v2.cl
-->mosaic_2x2 0002604740-20200628-OSIRIS-OsirisBroadBandImage.fits

(the name for the task, in this case mosaic_2x2 is not really important). When I tried that (using PyRAF v2.1.5 with IRAF 2.16.1 on a Debian 10 machine) I got an error:

Traceback (innermost last):
File "", line 1, in
File "", line 16, in mosaic
iraf.noao.PY()
AttributeError: Parameter PY not found

which I couldn’t understand. Even after contacting the support the mystery remained. Back in early August we had only a couple of images from our pre-imaging run (and not time to waste…) and the support team was kind enough to do it for us. But now that we have the actual spectroscopic data the images are way too more to ask again for this. Therefore, I tried to search a bit deeper than the first time.

I started by checking the mosaic_2x2_v2.cl file, and I removed all tasks to search where could be the problem. So I edited it to run this:

 
procedure mosaic (fobjeto)

file fobjeto {"",prompt="Object file:"}


begin

string objeto
file   text

objeto=mosaic.fobjeto

noao.
noao.artdata.
noao.imred
noao.imred.bias.
images.imgeom
ctio

#stsdas
#toolbox
#imgtools

end

In this form it only calls the basic packages of IRAF. Still though, when I attempted to run it again I took the same error! So the problem was already at the beginning. Then, I noticed these dots after the packages (e.g. noao, noao.artdata.) where obviously python was trying to get a non-existing attribute. After removing these dots it actually proceeded! Only after this revelation, it came to my mind to actually try the IRAF cl directly (when you have the python supported version there is no need to look back to cl!). However, it made a difference as (obviously) the cl doesn’t care about the cots… So the problem was python specific.

The script continued running only to … stuck again:


Traceback (innermost last):
File "", line 1, in
File "", line 44, in mosaic
iraf.imcreate(image = 'CCD_mosaic.fits', naxis = 2, naxis1 = 2110,naxis2 = 2051,pixtype = 'real')
AttributeError: Undefined IRAF task `imcreate'

However, this is easily interpreted. imcreate is a task in the ctio package, which is external (not part of the original core of IRAF). So you need to find the ctio package and put it under the iraf/extern/. This was actually not easy to spot since the support of IRAF by the STScI has dropped and most links are broken. The package is supported by the iraf-community, but I didn’t try to check exactly how to download (as I didn’t find it under my iraf/ directory). On the other hand, I found an alternative (in the iraf.net/forum) using the mkpattern task, under the artdata package which is already loaded in the file. Then, I just replaced the following line:

imcreate(image="CCD_mosaic.fits",naxis=2,naxis1=2110,naxis2=2051,pixtype="real")

with

mkpattern(input="CCD_mosaic.fits",pixtype="real", ndim=2, ncols=2110, nlines=2051)

and all problems are finally solved! The script runs to the end and provides the dinal mosaic image.

Bottomline, or what to do in three single steps

  • If you are running cl/ecl directly AND have ctio package installed you don’t need to do anything
  • If you are running cl/ecl directly and you don’t have ctio, just replace imcreate with mkpattern
  • If you are running on python then remove the dots when the IRAF packages are called

I would therefore strongly suggest the support team to remove the dots and replace the imcreate task so that it can work in all cases.
(For any potential user here is my modified version: mosaic_2x2_v2_gm.cl.txt – remove .txt)

Preparing for MOS observations with the GTC

Posted August 18, 2020 By grigoris

The pandemic of Covid-19 has obviously affected our observing runs also. ESO is (still) totally shut down while GTC after some off period it seems that it is under some limited operation.

Our accepted observing program with GTC includes Mulit-Object Spectroscopic observations with the OSIRIS instrument. For this we need to prepare masks, i.e. metal plates on which a number of slits is cut to allow the light of specific targets to pass and acquire their spectrum. In order to optimize the positioning of those slits (and make sure that they are placed on the correct coordinates) we have asked for pre-imaging, e.g. the acquisition of short exposures of the FOVs we have requested (for all our targets). With these and the appropriate software (Mask Designer) it becomes easy to create the masks.

Some weeks ago we actually received (quite unexpectedly, given the pandemic status) a couple of images. That allowed us to prepare the corresponding masks (after resolving all technical difficulties and questions of course). An example of these masks is shown below for the galaxy IC 10. When creating the mask we have to avoid slits that result in overlapping spectra (because we will end up with useless data). That’s why we need to prioritize our targets and select the best combination which will allow for the maximum non-colliding number of targets to be observed, respecting all constraints imposed by the program and the instrument involved. Although mask designing with modern software tools can become easy it is still a time-consuming step that needs caution and accuracy.

Mask for multi-slit spectroscopic observations with OSIRIS GTC - Target galaxy IC 10

The image shows the mask designed for the galaxy IC 10. The small white line are the slits with the corresponding spectra visible as vertical thick green lines. Smaller lines correspond to fiducial stars, i.e. stars that help to the alignment of the mask. The yellow box corresponds to the physical limits of the maks. The background image is a short exposure of IC 10 in the r band.

So, the masks have been prepared, verified, constructed, … and now we wait for the real spectroscopic observations to be obtained! Fingers crossed!


note: the current article has been written originally for the ASSESS group.

 

Some 2020 Perseids observed …

Posted August 17, 2020 By grigoris

It has been many many years since my last visual observations of meteors (back in 2010…). Last week I found the opportunity to observe a bit the peak of the Perseid shower.

I observed for a couple of hours, just before the moon rise, from my place in the relatively light polluted Heraklion of Crete. I was a bit tired since I have waken up in the morning and didn’t manage to get any sleep so definitely I missed some fainter ones. But there were a few bright Perseids that I saw with a couple of them being kind of spectacular!

Although the total number recorded was low (7 Perseids and 5 Sporadics) I enjoyed the observation. Sitting relaxed in a chair and viewing the nigh sky feels nice, especially when the anticipation on the next bright meteor is added.

You can find the particular observation log as Session ID 80974 at IMO.

eROSITA’s first all-sky image

Posted June 26, 2020 By grigoris

Recently the first all-sky image of the X-ray sky was released by the eROSITA instrument on-board the Spectrum-Roentgen-Gamma” (SRG) mission. It is fascinating that they refer to a million X-ray, which is almost 10 times more than what has been discovered from all X-ray surveys so far, so a bright X-ray future lies ahead! The image is captivating, especially when you try to pinpoint some of the brightest and interesting sources.

The energetic universe as seen with the eROSITA X-ray telescope. The first eROSITA all-sky survey was conducted over a period of six months by letting the telescope rotate continuously, thus providing a uniform exposure of about 150-200 seconds over most of the sky, with the ecliptic poles being visited more deeply. As eROSITA scans the sky, the energy of the collected photons is measured with an accuracy ranging from 2% – 6%. To generate this image, in which the whole sky is projected onto an ellipse (so-called Aitoff projection) with the centre of the Milky Way in the middle and the body of the Galaxy running horizontally, photons have been colour-coded according to their energy (red for energies 0.3-0.6 keV, green for 0.6-1 keV, blue for 1-2.3 keV). The original image, with a resolution of about 10”, and a corresponding dynamic range of more than one billion, is then smoothed (with a 10’ FWHM Gaussian) in order to generate the above picture.The red diffuse glow away from the galactic plane is the emission of the hot gas in the vicinity of the solar system (the Local Bubble). Along the plane itself, dust and gas absorb the lowest energy X-ray photons, so that only high-energy emitting sources can be seen, and their colour appears blue in the image. The hotter gas close to the galactic centre, shown in green and yellow, carries imprinted the history of the most energetic processes in the life of the Milky Way, such as supernova explosions, driving fountains of gas out of the plane, and, possibly, past outburst from the now dormant supermassive black hole in the centre of the galaxy. Piercing through this turbulent, hot diffuse medium, are hundreds of thousands of X-ray sources, which appear mostly white in the image, and uniformly distributed over the sky. Among them, distant active galactic nuclei (including a few emitting at a time when the Universe was less than one tenth of its current age) are visible as point sources, while clusters of galaxies reveal themselves as extended X-ray nebulosities. In total, about one million X-ray sources have been detected in the eROSITA all-sky image, a treasure trove that will keep the teams busy for the coming years.

Credit: Jeremy Sanders, Hermann Brunner and the eSASS team (MPE); Eugene Churazov, Marat Gilfanov (on behalf of IKI)

Source: Max Planck Institute for Extraterrestrial Physics, Our deepest view of the X-ray sky, (accessed 26 June 2020)

 

Annotated version of the eROSITA First All-Sky image. Several prominent X-ray features are marked, ranging from distant galaxy clusters (Coma, Virgo, Fornax, Perseus) to extended sources such as Supernova Remnants (SNRs) and Nebulae to bright point sources, e.g. Sco X-1, the first extrasolar X-ray source to be detected. The Vela SNR is to the right of this image, the Large Magellanic Cloud in the bottom right quadrant, the Shapley supercluster in the upper right (though not easily visible in this projection).

Source: Max Planck Institute for Extraterrestrial Physics, Presskit for the eROSITA First All-Sky Survey (accessed 26 June 2020)

Evolved Massive Stars at Low-metallicity II. Red Supergiant Stars in the Small Magellanic Cloud

Ming Yang, Alceste Z. Bonanos, Bi-Wei Jiang, Jian Gao, Panagiotis Gavras, Grigoris Maravelias, Shu Wang, Xiao-Dian Chen, Frank Tramper, Yi Ren, Zoi T. Spetsieri, Meng-Yao Xue

We present the most comprehensive RSG sample for the SMC up to now, including 1,239 RSG candidates. The initial sample is derived based on a source catalog for the SMC with conservative ranking. Additional spectroscopic RSGs are retrieved from the literature, as well as RSG candidates selected from the inspection of CMDs. We estimate that there are in total ∼ 1,800 or more RSGs in the SMC. We purify the sample by studying the infrared CMDs and the variability of the objects, though there is still an ambiguity between AGBs and RSGs. There are much less RSGs candidates (∼4%) showing PAH emission features compared to the Milky Way and LMC (∼15%). The MIR variability of RSG sample increases with luminosity. We separate the RSG sample into two subsamples (“risky” and “safe”) and identify one M5e AGB star in the “risky” subsample. Most of the targets with large variability are also the bright ones with large MLR. Some targets show excessive dust emission, which may be related to previous episodic mass loss events. We also roughly estimate the total gas and dust budget produced by entire RSG population as ∼1.9(+2.4/−1.1)×10−6 M⊙/yr in the most conservative case. Based on the MIST models, we derive a linear relation between Teff and observed J−KS color with reddening correction for the RSG sample. By using a constant bolometric correction and this relation, the Geneva evolutionary model is compared with our RSG sample, showing a good agreement and a lower initial mass limit of ∼7 M⊙ for the RSG population. Finally, we compare the RSG sample in the SMC and the LMC. Despite the incompleteness of LMC sample in the faint end, the result indicates that the LMC sample always shows redder color (except for the IRAC1−IRAC2 and WISE1−WISE2 colors due to CO absorption) and larger variability than the SMC sample.

arXiv.org: 2005.10108

Packaging Skinakas’ primary mirror

Posted March 9, 2020 By grigoris

Back in November of 2019, the primary mirror (of 1.3m) at the Skinakas Observatory was dismounted to send it for recoating (a procedure performed once every 4-5 years). The following short clip shows the packaging of the mirror, a very delicate procedure (the whole process took several hours … compressed to a few minutes).

The second nearest exoplanet – Proxima c

Posted January 20, 2020 By grigoris

It is exciting to see that the nearest star to our Sun has more than one planet (Proxima b, [1]). In a paper led by Mario Damasso and Fabio Del Sordo [2] revealed the existence of another one. The Proxima c is a planet with an orbital period of about 1900 days (~5.21 years), a semi-major axis ac = 1.48 ± 0.08 AU, minimum mass (mc sin ic) = 5.8 ± 1.9 M⊕, and equilibrium temperature Teq=39(+16/−18) K. This super-Earth is found further away than the typical distances for this type of planets, something that poses interesting questions with respect to the planet formation and evolution.

Apart from the very interesting results of this paper what is equally exciting is the fact the Fabio has been my office mate since 2017 at the University of Crete. I  am really happy for him and his success. And, as he moved to a new position in Italy, I wish him all the best and new discoveries.

 

Abstract
Our nearest neighbor, Proxima Centauri, hosts a temperate terrestrial planet. We detected in radial velocities evidence of a possible second planet with minimum mass mc sin ic = 5.8 ± 1.9M and orbital period Pc=5.21+0.260.22 years. The analysis of photometric data and spectro-scopic activity diagnostics does not explain the signal in terms of a stellar activity cycle, but follow-up is required in the coming years for confirming its planetary origin. We show that the existence of the planet can be ascertained, and its true mass can be determined with high accuracy, by combining Gaia astrometry and radial velocities. Proxima c could become a prime target for follow-up and characterization with next-generation direct imaging instrumentation due to the large maximum angular separation of ~1 arc second from the parent star. The candidate planet represents a challenge for the models of super-Earth formation and evolution.

 

References:

[1] Anglada-Escudé et al. 2016, “A terrestrial planet candidate in a temperate orbit around Proxima Centauri“, Nature, 536, 437 | NASA/ADS

[2] Mario Damasso, Fabio Del Sordo, Guillem Anglada-Escudé, Paolo Giacobbe, Alessandro Sozzetti, Alessandro Morbidelli, Grzegorz Pojmanski, Domenico Barbato, R. Paul Butler, Hugh R. A. Jones, Franz-Josef Hambsch, James S. Jenkins, María José López-González, Nicolás Morales, Pablo A. Peña Rojas, Cristina Rodríguez-López, Eloy Rodríguez, Pedro J. Amado, Guillem Anglada, Fabo Feng and Jose F. Gómez, 2020, “A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU”, Science Advances, Vol. 6, no. 3, eaax7467 | NASA/ADS