JWST is alive and … so do we!

Posted July 12, 2022 By grigoris

JWST delivered its first images (publicly) today! That was the best news to get as an astronomer for two reasons. The one is of course the scientific reasons, as it is one of the most important telescopes sent to space and perhaps the most challenging mission to launch and deploy at that distance (L1). There should have been already tens (or hundreds ??) of articles with respect to this part.

However, there is another important reason. Everything went finally smooth and we have a working telescope. That means that Astronomy will not dismay! Imagine if all this effort and funding of 10 billion dollars would fail… I cannot and I do not want to! Thankfully this did not happen and hopefully this will motivate more funding towards Astronomy that should be reflected to jobs also….

So let’s enjoy and cheer about this new era in Astronomy!

Webb’s First Deep Field, the image of galaxy cluster SMACS 0723 (Credit: NASA)

In March I got invited to give a talk for the Thüringer Landessternwarte Tautenburg group. Back then June 21 looked like a far date in a relative relaxed time period. I was so wrong… they are so hectic days!

Nevertheless, I managed to prepare a talk entitled: “The ASSESS classifier: a machine-learning tool to uncover populations of evolved massive stars in nearby galaxies”. I tried to prepare a more general introduction to the massive stars and their evolution, along with the issues we are facing as far as mass loss. I highlighted the importance of the ASSESS project and the provide a short description of what is ASSESS all about. Then I described the machine-learning classifier we developed and our first results from this.

Although pressing, at the end I really enjoyed this talk!

Lenovo X-1 not charging … frustration solved!

Posted June 20, 2022 By grigoris

Last night I was working on the laptop when naturally it asked for some power. Typically, when you plug in the power is should charge the battery, right? Well… no, it didn’t do that at all!

And then dread start developing! What is wrong? Is it the plug, the connector or even worse the port? As it was late I called it a day and went to bed. Today, I started by trying another power cable and finally another charger … in vain! Then, Tassos K. told me the obvious “Why you don’t look it up, somebody should have written about it“.

And I did, to find out this post by Steven Allen “Fix For Lenovo X1 Carbon Not Charging“. The solution is to reset the batter, and as described:

  1. Unplug from any power sources (this won’t work if you don’t do this).
  2. Reboot into the BIOS setup (F1 on boot).
  3. Navigate to the Power menu.
  4. Select the “Disable built-in battery” option.
  5. Wait for the laptop to power off and then wait 30 seconds.
  6. Connect the power and start the laptop.

This will temporarily disable the battery which seems to reset any “bad charger” bits. And this works in Gen 6 also!

Hopefully, this will save others some time and frustration.

Steven Allen

You bet! Only the idea that I would have to return the laptop for inspection and the time lost is simply put … terrifying !

And there is light !

In-person participation at IAUS 361

Posted June 1, 2022 By grigoris

Finally after two years of pandemic and two postponements of the IAU Symposium 361: “Massive Stars Near and Far” it was held in Ballyconnell, Ireland in the week of 8-13 May 2022.

It was really a great opportunity. Not only I managed to meet in-person people and collaborators that I met through zoom meetings but actually it was the first time (since 2020) to meet also my colleagues working in the ASSESS project (while some of them for the first time!).

The event was of course a great place to present our latest results. I got the privilege to have a talk about our latest results from the machine-learning classifier we have developed (see this post).

  • Talk: “Introducing the ASSESS project: Episodic Mass Loss in Evolved Massive Stars – Key to Understanding the Explosive Early Universe” – Alceste Bonanos
  • Talk: “Using machine-learning to investigate the populations of dusty evolved stars in various metallicities” – Grigoris Maravelias
  • Poster: “Progenitors and companions of stripped-envelope supernovae” – Manos Zapartas
  • Poster: “Properties of dusty Red Supergiant stars in the Magellanic Clouds” – Stephan de Wit
  • Poster: “ASSESSing evolved massive stars in NGC 6822 and IC 10” – Gonzalo Munoz Sanchez
From left: Grigoris Maravelias, Stephan de Wit, Konstantinos Antoniadis, Frank Tramper, Alceste Bonanos, Manos Zapartas, Gonzalo Munoz Sanchez, Evangelia Christodoulou

Tuesday 12 April , 1900 CEST ! See you there !

Following the success of the first Astrostatistics Summer School in Crete in 2019 (18-21 June), we now organize its second iteration (11-15 July). Initially scheduled for 2020, but we all now what happened and it was delayed. Now things to have matured so that we can actually repeat it and of course with an in person meeting as this school presents the theory but it is heavily based on actual hands-on experience with real astronomical data.

For all interested individuals please check the website. There is not much time before we meet in July !

This is the first paper that results from my work with the ASSESS team over the last years. It focuses on the development of a machine-learning photometric classifier to characterize massive stars originating from IR (Spitzer) catalogs, which will help us understand the episodic mass loss. The first paper presents the method and the multiple test we performed to understand its capabilities and limitations. Now we proceed with the derivation of the catalogs and their analysis.


A machine-learning photometric classifier for massive stars in nearby galaxies I. The method

Grigoris Maravelias, Alceste Z. Bonanos, Frank Tramper, Stephan de Wit, Ming Yang, Paolo Bonfini

Context. Mass loss is a key parameter in the evolution of massive stars. Despite the recent progress in the theoretical understanding of how stars lose mass, discrepancies between theory and observations still hold. Moreover, episodic mass loss in evolved massive stars is not included in the models while the importance of its role in the evolution of massive stars is currently undetermined.
Aims. A major hindrance to determining the role of episodic mass loss is the lack of large samples of classified stars. Given the recent availability of extensive photometric catalogs from various surveys spanning a range of metallicity environments, we aim to remedy the situation by applying machine learning techniques to these catalogs.
Methods. We compiled a large catalog of known massive stars in M31 and M33 using IR (Spitzer) and optical (Pan-STARRS) photometry, as well as Gaia astrometric information which helps with foreground source detection. We grouped them in 7 classes (Blue, Red, Yellow, B[e] supergiants, Luminous Blue Variables, Wolf-Rayet, and outliers, e.g. QSOs and background galaxies). As this training set is highly imbalanced, we implemented synthetic data generation to populate the underrepresented classes and improve separation by undersampling the majority class. We built an ensemble classifier utilizing color indices as features. The probabilities from three machine-learning algorithms (Support Vector Classification, Random Forests, Multi-layer Perceptron) were combined to obtain the final classification.
Results. The overall weighted balanced accuracy of the classifier is ∼ 83%. Red supergiants are always recovered at ∼ 94%. Blue and Yellow supergiants, B[e] supergiants, and background galaxies achieve ∼ 50 − 80%. Wolf-Rayet sources are detected at ∼ 45% while Luminous Blue Variables are recovered at ∼ 30% from one method mainly. This is primarily due to the small sample sizes of these classes. In addition, the mixing of spectral types, as there are no strict boundaries in the features space (color indices) between those classes, complicates the classification. In an independent application of the classifier to other galaxies (IC 1613, WLM, Sextans A) we obtained an overall accuracy of ∼ 70%. This discrepancy is attributed to the different metallicity and extinction effects of their host galaxies. Motivated by the presence of missing values we investigated the impact of missing data imputation using simple replacement with mean values and an iterative imputor, which proved to be more capable. We also investigated the feature importance to find that r − i and y − [3.6] were the most important, although different classes are sensitive to different features (with potential improvement with additional features).
Conclusions. The prediction capability of the classifier is limited by the available number of sources per class (which corresponds to the sampling of their feature space), reflecting the rarity of these objects and the possible physical links between these massive star phases. Our methodology is also efficient in correctly classifying sources with missing data, as well as at lower metallicities (with some accuracy loss), making it an excellent tool for accentuating interesting objects and prioritizing targets for observations.

The confusion matrix for 54 sources without missing values in the three galaxies (IC 1613, WLM, and Sextans A). We achieve an overall accuracy of ~70%, and we notice that the largest confusion occurs between BSG and YSG. The overall difference in the accuracy compared to that obtained with the M31 and M33 sample is attributed to the photometric errors, and the effect of metallicity and extinction in these galaxies.

arXiv: 2203.08125

The following paper is the result of a tedious task that my good friend Manos Kardasis undertook over the last two+ years. He noticed the presence of this (relatively newly discovered) feature in Venus and collected images from amateur observers worldwide to study in detail the discontinuity and constrain some of its properties by comparison with data from JAXA’s Akatsuki.

The importance of this work is twofold: a. it shows the high potential of observations with small telescopes to perform scientific studies of quality, and b. it promotes and encourage encourage amateur observers to perform and increase the observations of Venus.

I am really happy with this paper as it is a very well-deserved outcome of the work and effort that Manos put into this (fighting and joggling with many other things at the same time) and it showcases how a professional-amateur collaboration can succeed. Well done Manos!


Amateur Observers Witness the Return of Venus’ Cloud Discontinuity

Kardasis E., Peralta J., Maravelias G., Imai M., Wesley A., Olivetti T., Naryzhniy Y., Morrone L., Gallardo A., Calapai G., Camarena J., Casquinha P., Kananovich D., MacNeill N., Viladrich C., Takoudi A.

Firstly identified in images from JAXA’s orbiter Akatsuki, the cloud discontinuity of Venus is a planetary-scale phenomenon known to be recurrent since, at least, the 1980s. Interpreted as a new type of Kelvin wave, this disruption is associated to dramatic changes in the clouds’ opacity and distribution of aerosols, and it may constitute a critical piece for our understanding of the thermal balance and atmospheric circulation of Venus. Here, we report its reappearance on the dayside middle clouds four years after its last detection with Akatsuki/IR1, and for the first time, we characterize its main properties using exclusively near-infrared images from amateur observations. In agreement with previous reports, the discontinuity exhibited temporal variations in its zonal speed, orientation, length, and its effect over the clouds’ albedo during the 2019/2020 eastern elongation. Finally, a comparison with simultaneous observations by Akatsuki UVI and LIR confirmed that the discontinuity is not visible on the upper clouds’ albedo or thermal emission, while zonal speeds are slower than winds at the clouds’ top and faster than at the middle clouds, evidencing that this Kelvin wave might be transporting momentum up to upper clouds.

Figure 1: Observations of cloud discontinuities, observed in the 2019/2020 eastern elongation of Venus, showing different morphologies.

arXiv: 2202.12601
Journal: Atmosphere 2022, 13(2), 348

GTC/OSIRIS instrument footprint

Posted March 2, 2022 By grigoris

When creating finding charts for observations with the OSIRIS instrument on GTC you need to check the field-of-view (fov). With the Aladin Sky Atlas it is easy to download an image and overplot an instrument footprint (Edit > Load instrument footprint). Although there is a selection of instruments, by default the OSIRIS is not included. It is possible however to “create your footprint” which opens a link to an online editor.

Using this and the information collected from the manual and the web for OSIRIS I created a footprint that displays the fov for the imaging (larger box) along with the fov for the Multi-Object Spectroscopy (inner boxes) which display the two CCDs with the gap in between. Then, it is easy to place the footprint to the exact coordinates you wish in order to include (or exclude) sources of interest, check which parts are outside the fields or in the gap.

You can find the file here: gtc-osiris-v2.vot (better right click on that and save as…)

An example image for NGC 2403 with three footprints overplotted.

Revisiting the evolved hypergiants in the Magellanic Clouds

Kourniotis, M.; Kraus, M.; Maryeva, O.; Borges Fernandes, M.; Maravelias, G.

The massive stars that survive the phase of red supergiants (RSGs) spend the rest of their life in extremity. Their unstable atmospheres facilitate the formation and episodic ejection of shells that alter the stellar appearance and surroundings. In the present study, we revise the evolutionary state of eight hypergiants in the Magellanic Clouds, four of early-A type and four of FG type, and complement the short list of the eruptive post-RSGs termed as yellow hypergiants (YHGs). We refine the outdated temperatures and luminosities of the stars by means of high-resolution spectroscopy with FEROS. The A-type stars are suggested to be in their early, post-main sequence phase, showing spectrophotometric characteristics of redward evolving supergiants. On the other hand, the FG-type stars manifest themselves through the enhanced atmospheric activity that is traced by emission filling in Hα and the dynamical modulation of the low-excitation Ba II line. Of these stars, the dusty HD269723 is suggested to have recently departed from a cool phase. We identify double-peaked emission in the FEROS data of HD269953 that emerges from an orbiting disk-hosting companion. The highlight of the study is an episode of enhanced mass loss of HD271182 that manifests as a dimming event in the lightcurve and renders the star “modest” analogue to ρ Cas. The luminosity log (L/L) = 5.6 of HD271182 can serve as an updated threshold for the luminosity of stars exhibiting a post-RSG evolution in the Large Magellanic Cloud.

arXiv: 2202.04667