Tag Archive


amateur astronomy awk bash b[e] supergiant cartoon conference convert evolved star exoplanet fedora figaro fits fun galaxy iraf large magellanic cloud latex linux lmc machine learning magellanic clouds massive star matplotlib meteor mypaper paper peblo photometry planet pro-am pyraf python red supergiant scisoft skinakas observatory small magellanic cloud smc spectroscopy starlink talk ubuntu university of crete video x-ray yellow hypergiant

New Paper: Properties of luminous red supergiant stars in the Magellanic Clouds

Properties of luminous red supergiant stars in the Magellanic Clouds

S. de Wit, A.Z. Bonanos, F. Tramper, M. Yang, G. Maravelias, K. Boutsia, N. Britavskiy, and E. Zapartas

There is evidence that some red supergiants (RSGs) experience short lived phases of extreme mass loss, producing copious amounts of dust. These episodic outburst phases help to strip the hydrogen envelope of evolved massive stars, drastically affecting their evolution. However, to date, the observational data of episodic mass loss is limited. This paper aims to derive surface properties of a spectroscopic sample of fourteen dusty sources in the Magellanic Clouds using the Baade telescope. These properties may be used for future spectral energy distribution fitting studies to measure the mass loss rates from present circumstellar dust expelled from the star through outbursts. We apply MARCS models to obtain the effective temperature (Teff) and extinction (AV) from the optical TiO bands. We use a χ2 routine to determine the best fit model to the obtained spectra. We compute the Teff using empirical photometric relations and compare this to our modelled Teff. We have identified a new yellow supergiant and spectroscopically confirmed eight new RSGs and one bright giant in the Magellanic Clouds. Additionally, we observed a supergiant B[e] star and found that the spectral type has changed compared to previous classifications, confirming that the spectral type is variable over decades. For the RSGs, we obtained the surface and global properties, as well as the extinction AV. Our method has picked up eight new, luminous RSGs. Despite selecting dusty RSGs, we find values for AV that are not as high as expected given the circumstellar extinction of these evolved stars. The most remarkable object from the sample, LMC3, is an extremely massive and luminous evolved massive star and may be grouped amongst the largest and most luminous RSGs known in the Large Magellanic Cloud (log(L∗/L⊙)∼5.5 and R=1400 R⊙).

Fig. 9: Top: HRD indicating the locations of our LMC targets with inverted red triangles. The Teff for all data points was derived through the TiO method. Smaller light grey squares and stars are objects from Levesque et al. (2006) and Davies et al. (2013), respectively. For the two outliers we have extended the uncertainty assuming a shift of 0.3 mag in the K−band (dotted vertical error bar) instead of only the propagated uncertainty, to visualize the effect of intrinsic variability. The colour map represents the central 12C mass fraction, while the nodes on the track again indicate a step of 104 years

arXiv: 2209.11239

New Paper: Revisiting the evolved hypergiants in the Magellanic Clouds

Revisiting the evolved hypergiants in the Magellanic Clouds

Kourniotis, M.; Kraus, M.; Maryeva, O.; Borges Fernandes, M.; Maravelias, G.

The massive stars that survive the phase of red supergiants (RSGs) spend the rest of their life in extremity. Their unstable atmospheres facilitate the formation and episodic ejection of shells that alter the stellar appearance and surroundings. In the present study, we revise the evolutionary state of eight hypergiants in the Magellanic Clouds, four of early-A type and four of FG type, and complement the short list of the eruptive post-RSGs termed as yellow hypergiants (YHGs). We refine the outdated temperatures and luminosities of the stars by means of high-resolution spectroscopy with FEROS. The A-type stars are suggested to be in their early, post-main sequence phase, showing spectrophotometric characteristics of redward evolving supergiants. On the other hand, the FG-type stars manifest themselves through the enhanced atmospheric activity that is traced by emission filling in Hα and the dynamical modulation of the low-excitation Ba II line. Of these stars, the dusty HD269723 is suggested to have recently departed from a cool phase. We identify double-peaked emission in the FEROS data of HD269953 that emerges from an orbiting disk-hosting companion. The highlight of the study is an episode of enhanced mass loss of HD271182 that manifests as a dimming event in the lightcurve and renders the star “modest” analogue to ρ Cas. The luminosity log (L/L) = 5.6 of HD271182 can serve as an updated threshold for the luminosity of stars exhibiting a post-RSG evolution in the Large Magellanic Cloud.

arXiv: 2202.04667

EAS 2021 poster contributions

Three poster contributions during EAS 2021 with the following … statistics: all of them on massive stars,  two within the framework of the ASSESS project, and two on machine-learning applications.

1. Applying machine-learning methods to build a photometric classifier for massive stars in nearby galaxies

Grigoris Maravelias, Alceste Bonanos, Frank Tramper, Stephan de Wit, Ming Yang, Paolo Bonfini

Mass loss is a key parameter in the evolution of massive stars. Despite the recent progress in the theoretical understanding of how stars lose mass, discrepancies between theory and observations still hold. Even worse, episodic mass loss in evolved massive stars is not included in the models while the importance of its role in the evolution os massive stars is currently undetermined. A major hindrance to determining the role of episodic mass loss is the lack of large samples of classified stars. Given the recent availability of extensive photometric catalogs from various surveys spanning a range of metallicity environments, we aim to remedy the situation by applying machine learning techniques to these catalogs.We compiled a large catalog of known massive stars in M31 and M33, using IR (Spitzer) and optical (Pan-STARRS) photometry, as well as Gaia astrometric information. We grouped them in 7 classes (Blue, Red, Yellow, B[e] supergiants, Luminous Blue Variables, Wolf-Rayet, and outliers, e.g. QSO’s and background galaxies). Using this catalog as a training set, we built an ensemble classifier utilizing color indices as features. The probabilities from three machine-learning algorithms (Support Vector Classification, Random Forests, Neural Networks) are combined to obtain the final classifications. The overall performance of the classifier is ~87%. Highly populated (Red/Blue/Yellow Supergiants) and well-defined classes (B[e] Supergiants) have a high recovery rate between ~98-74%. On the contrary, Wolf-Rayet sources are detected at ~20% while Luminous Blue Variables are almost non-existent. The is mainly due to the small sample sizes of these classes, although M31 and M33 have spectral classifications for several massive stars (about 2500). In addition, the mixing of spectral types, as there are no strict boundaries in the features space (color indexes) between those classes, complicates the classification. In an independent application of the classifier to other galaxies (IC 1613, WLM, Sextans A) we obtained an overall accuracy of ~71% despite the missing values on their features (which we replace with averaged values from the training sample). This approach results only in a few percent difference, with the remaining discrepancy attributed to the different metallicity environments of their host galaxies. The classifier’s prediction capability is only limited by the available number of sources per class, reflecting the rarity of these objects and the possible physical links between these massive star phases. Our methodology is also efficient in correctly classifying sources with missing data and at lower metallicities, making it an excellent tool for spotting interesting objects and prioritizing targets for observations. Future spectroscopic observations will offer a test-bed of its actual performance along with opportunities for improvement.

For more see this k-poster (submitted for SS32: Machine Learning and Visualisation in Data Intensive Era ).

2. A new automated tool for the spectral classification of OB stars

E. Kyritsis, G. Maravelias, A. Zezas, P. Bonfini, K. Kovlakas, P. Reig

As more and more large spectroscopic surveys become available, an automated approach in spectral classification becomes necessary. Due to the importance of the massive stars it is of paramount importance to identify the phenomenological parameters of these stars (e.g., the spectral type ) which can be used as proxies to their physical parameters (e.g mass, temperature).
In this work, we use the Random Forest (RF) algorithm to develop a tool for automated spectral classification of the OB-type stars into their sub-types. We use the regular RF algorithm, the Probabilistic RF (PRF) which is an extension of RF that incorporates uncertainties, and we introduce the KDE – RF method which is a combination of the Kernel-Density Estimation and the RF algorithm. We train the algorithms on the Equivalent Width (EW) of characteristic absorption lines measured in the spectra from large Galactic (LAMOST, GOSSS) and extragalactic surveys (2dF, VFTS) with available spectral-type classification. By following an adaptive binning approach we group the labels of these data on 11 sub-types within the range O3-B9. We examined which of the characteristic spectral lines (features) are more important to use based on a number of feature selection methods and we searched for the optimal hyper-parameters of the classifiers, to achieve the best performance.
From the feature screening process, we find 13 spectral lines as the optimal number of features. We find that the overall accuracy score is ~ 76 % with similar results across all approaches, with our KDE – RF being slightly lower at ~ 73 %. In addition, we show that our optimized RF model can reach an overall accuracy score of ~ 85 % in the ideal case of robust measurement of the weakest characteristic spectral lines. We apply our model in other observational data sets providing examples of potential application of our classifier on real science cases. We find that it performs well for both single massive stars and for the companion massive stars in Be X-ray Binaries, especially for data with S/N in the range 50-300. Furthermore, we present an alternative model for lower quality data S/N < 25 based on a reduced feature-set classification scheme, including only the strongest spectral lines.
The similarity in the performances of our models indicates the robustness and the reliability of the RF algorithm when used for spectral classification of early-type stars. This is strengthened also by the fact that we are working with real-world data and not with simulations. In addition, the approach presented in this work is very fast and applicable to products from different surveys in terms of quality (e.g different resolutions) and of different formats (e.g., absolute or normalized flux).

For more see this k-poster (submitted for S16: Massive stars: birth, rotation, and chemical evolution).

3. Evolved massive stars in the Magellanic Clouds

Ming Yang, Alceste Bonanos, Biwei Jiang, Jian Gao, Panagiotis Gavras, Grigoris Maravelias, Man I Lam, Shu Wang, Xiaodian Chen, Yi Ren, Frank Tramper, Zoi Spetsieri

We present two clean, magnitude-limited (IRAC1 or WISE1≤15.0 mag) multiwavelength source catalogs for the Large and Small Magellanic Cloud (LMC and SMC). The catalogs were built by crossmatching (1”) and deblending (3”) between the source list of Spitzer Enhanced Imaging Products (SEIP) and Gaia Data Release 2 (DR2), with strict constraints on the Gaia astrometric solution in order to remove the foreground contamination. It is estimated that about 99.5% of the targets in our catalog are most likely genuine members of the LMC and SMC. The LMC catalog contains 197,004 targets in 52 different bands, while SMC catalog including contains 45,466 targets in 50 different bands, ranging from the ultraviolet to the far-infrared. Additional information about radial velocities and spectral and photometric classifications were collected from the literature. For the LMC, we compare our sample with the sample from Gaia Collaboration et al. (2018), indicating that the bright end of our sample is mostly comprised of blue helium-burning stars (BHeBs) and red HeBs with inevitable contamination of main sequence stars at the blue end. For the SMC, by using the evolutionary tracks and synthetic photometry from MESA Isochrones & Stellar Tracks and the theoretical J-Ks color cuts, we identified and ranked 1,405 red supergiant (RSG), 217 yellow supergiant (YSG), and 1,369 blue supergiant (BSG) candidates in the SMC in five different color-magnitude diagrams (CMDs), where attention should also be paid to the incompleteness of our sample. For the LMC, due to the problems with models, we applied modified magnitude and color cuts based on previous studies, and identified and ranked 2,974 RSG, 508 YSG, and 4,786 BSG candidates in the LMC in six CMDs. The comparison between the CMDs from the two catalogs of the LMC SMC indicates that the most distinct difference appears at the bright red end of the optical and near-infrared CMDs, where the cool evolved stars (e.g., RSGs, asymptotic giant branch stars, and red giant stars) are located, which is likely due to the effect of metallicity and star formation history. A further quantitative comparison of colors of massive star candidates in equal absolute magnitude bins suggests that there is essentially no difference for the BSG candidates, but a large discrepancy for the RSG candidates since LMC targets are redder than the SMC ones, which may be due to the combined effect of metallicity on both spectral type and mass-loss rate as well as the age effect. The effective temperatures (Teff) of massive star populations are also derived from reddening-free color of (J-Ks). The Teff ranges are 3500≤Teff≤5000 K for an RSG population, 5000≤Teff≤8000 K for a YSG population, and Teff≥8000 K for a BSG population, with larger uncertainties toward the hotter stars.

For more see this k-poster (submitted for S16: Massive stars: birth, rotation, and chemical evolution).

New Paper: Evolved Massive Stars at Low-metallicity III. A Source Catalog for the Large Magellanic Cloud

Evolved Massive Stars at Low-metallicity III. A Source Catalog for the Large Magellanic Cloud

Ming Yang, Alceste Z. Bonanos, Biwei Jiang, Jian Gao, Panagiotis Gavras, Grigoris Maravelias, Shu Wang, Xiao-Dian Chen, Man I Lam, Yi Ren, Frank Tramper, Zoi T. Spetsieri

We present a clean, magnitude-limited (IRAC1 or WISE115.0 mag) multiwavelength source catalog for the LMC. The catalog was built upon crossmatching (1′′) and deblending (3′′) between the SEIP source list and Gaia DR2, with strict constraints on the Gaia astrometric solution to remove the foreground contamination. The catalog contains 197,004 targets in 52 different bands including 2 ultraviolet, 21 optical, and 29 infrared bands. Additional information about radial velocities and spectral/photometric classifications were collected from the literature. The bright end of our sample is mostly comprised of blue helium-burning stars (BHeBs) and red HeBs with inevitable contamination of main sequence stars at the blue end. After applying modified magnitude and color cuts based on previous studies, we identify and rank 2,974 RSG, 508 YSG, and 4,786 BSG candidates in the LMC in six CMDs. The comparison between the CMDs of the LMC and SMC indicates that the most distinct difference appears at the bright red end of the optical and near-infrared CMDs, where the cool evolved stars (e.g., RSGs, AGB, and RGs) are located, which is likely due to the effect of metallicity and SFH. Further quantitative comparison of colors of massive star candidates in equal absolute magnitude bins suggests that, there is basically no difference for the BSG candidates, but large discrepancy for the RSG candidates as LMC targets are redder than the SMC ones, which may be due to the combined effect of metallicity on both spectral type and mass-loss rate, and also the age effect. The Teff of massive star populations are also derived from reddening-free color of (JKS)0. The Teff ranges are 3500<Teff<5000 K for RSG population, 5000<Teff<8000 K for YSG population, and Teff>8000 K for BSG population, with larger uncertainties towards the hotter stars.

New paper on the circumstellar environment of the B[e] supergiant LHA 120-S 35

Resolving the clumpy circumstellar environment of the B[e] supergiant LHA 120-S 35

Andrea F. Torres, Lydia S. Cidale, Michaela Kraus, María L. Arias, Rodolfo H. Barbá, Grigoris Maravelias, Marcelo Borges Fernandes

B[e] supergiants (SGs) are massive post-main-sequence stars, surrounded by a complex circumstellar (CS) environment. The aim of this work is to investigate the structure and kinematics of the CS disc of the B[e] SG LHA 120-S 35. We used high-resolution optical spectra obtained in different years to model the forbidden emission lines and determine the kinematical properties of their line-forming regions, assuming Keplerian rotation. We also used low-resolution near-infrared (IR) spectra to explore the variability of molecular emission. LHA 120-S 35 displays spectral variability in both optical and IR regions. The P-Cygni line profiles of H I, as well as those of Fe II and O I, suggest the presence of a strong bipolar clumped wind. We distinguish density enhancements in the P-Cygni absorption component of the first Balmer lines, which show variations in both velocity and strength. The P-Cygni profile emission component is double-peaked, indicating the presence of a rotating CS disc. We also observe line-profile variations in the permitted and forbidden features of Fe II and O I. In the IR, we detect variations in the intensity of the H I emission lines as well as in the emission of the CO band-heads. Moreover, we find that the profiles of each [Ca II] and [O I] emission lines contain contributions from spatially different (complete or partial) rings. Globally, we find evidence of detached multi-ring structures, revealing density variations along the disc. We suggest that LHA 120-S 35 has passed through the red-supergiant (RSG) phase and evolves back bluewards in the Hertzsprung-Russell diagram. The formation of the complex CS structure could be the result of the wind-wind interactions of the post-RSG wind with the previously ejected material from the RSG. However, the presence of a binary companion can not be excluded. Finally, we find that LHA 120-S 35 belongs to a young stellar cluster.

arXiv.org: 1712.09759