Tag Archive


amateur astronomy awk bash be b[e] supergiant cartoon conference convert exoplanet fedora figaro fits fun galaxy history iraf jupiter latex linux magellanic clouds massive star matplotlib meteor mypaper ondrejov observatory optical paper peblo photometry planet pro-am pyraf python scisoft skinakas observatory small magellanic cloud smc spectroscopy starlink talk theli ubuntu university of crete video x-ray

New paper: Evolved Massive Stars at Low-metallicity II. Red Supergiant Stars in the Small Magellanic Cloud

Evolved Massive Stars at Low-metallicity II. Red Supergiant Stars in the Small Magellanic Cloud

Ming Yang, Alceste Z. Bonanos, Bi-Wei Jiang, Jian Gao, Panagiotis Gavras, Grigoris Maravelias, Shu Wang, Xiao-Dian Chen, Frank Tramper, Yi Ren, Zoi T. Spetsieri, Meng-Yao Xue

We present the most comprehensive RSG sample for the SMC up to now, including 1,239 RSG candidates. The initial sample is derived based on a source catalog for the SMC with conservative ranking. Additional spectroscopic RSGs are retrieved from the literature, as well as RSG candidates selected from the inspection of CMDs. We estimate that there are in total ∼ 1,800 or more RSGs in the SMC. We purify the sample by studying the infrared CMDs and the variability of the objects, though there is still an ambiguity between AGBs and RSGs. There are much less RSGs candidates (∼4%) showing PAH emission features compared to the Milky Way and LMC (∼15%). The MIR variability of RSG sample increases with luminosity. We separate the RSG sample into two subsamples (“risky” and “safe”) and identify one M5e AGB star in the “risky” subsample. Most of the targets with large variability are also the bright ones with large MLR. Some targets show excessive dust emission, which may be related to previous episodic mass loss events. We also roughly estimate the total gas and dust budget produced by entire RSG population as ∼1.9(+2.4/−1.1)×10−6 M⊙/yr in the most conservative case. Based on the MIST models, we derive a linear relation between Teff and observed J−KS color with reddening correction for the RSG sample. By using a constant bolometric correction and this relation, the Geneva evolutionary model is compared with our RSG sample, showing a good agreement and a lower initial mass limit of ∼7 M⊙ for the RSG population. Finally, we compare the RSG sample in the SMC and the LMC. Despite the incompleteness of LMC sample in the faint end, the result indicates that the LMC sample always shows redder color (except for the IRAC1−IRAC2 and WISE1−WISE2 colors due to CO absorption) and larger variability than the SMC sample.

arXiv.org: 2005.10108

New paper: Evolved Massive Stars at Low-metallicity I. A Source Catalog for the Small Magellanic Cloud

Evolved Massive Stars at Low-metallicity I. A Source Catalog for the Small Magellanic Cloud

Ming Yang, Alceste Z. Bonanos, Bi-Wei Jiang, Jian Gao, Panagiotis Gavras, Grigoris Maravelias, Yi Ren, Shu Wang, Meng-Yao Xue, Frank Tramper, Zoi T. Spetsieri, Ektoras Pouliasis

We present a clean, magnitude-limited (IRAC1 or WISE1 ≤ 15.0 mag) multiwavelength source catalog for the SMC with 45,466 targets in total, with the purpose of building an anchor for future studies, especially for the massive star populations at low-metallicity. The catalog contains data in 50 different bands including 21 optical and 29 infrared bands, ranging from the ultraviolet to the far-infrared. Additionally, radial velocities and spectral classifications were collected from the literature, as well as infrared and optical variability statistics were retrieved from different projects. The catalog was essentially built upon a 1′′ crossmatching and a 3′′ deblending between the SEIP source list and Gaia DR2 photometric data. Further constraints on the proper motions and parallaxes from Gaia DR2 allowed us to remove the foreground contamination. We estimated that about 99.5\% of the targets in our catalog were most likely genuine members of the SMC. By using the evolutionary tracks and synthetic photometry from MIST and the theoretical J−KS color cuts, we identified 1,405 RSG, 217 YSG and 1,369 BSG candidates in the SMC in five different CMDs, where attention should also be paid to the incompleteness of our sample. We ranked the candidates based on the intersection of different CMDs. A comparison between the models and observational data shows that the lower limit of initial mass for the RSGs population may be as low as 7 or even 6 M⊙ and the RSG is well separated from the AGB population even at faint magnitude, making RSGs a unique population connecting the evolved massive and intermediate stars, since stars with initial mass around 6 to 8 M⊙ are thought to go through a second dredge-up to become AGBs. We encourage the interested reader to further exploit the potential of our catalog

arXiv.org: 1907.06717

ATel #12237: A B1-2e optical classification for the optical counterpart of XTE J0052-723 (SXP 4.78; Swift J005139.2-721704)

Building upon our previous ATel #12224 we managed to obtain an optical spectrum of the counterpart. The full text follows:

ATel #12237; G. Maravelias (NOA), V. Antoniou (TTU/SAO), K. Boutsia (LCO), A. Zezas (UoC/SAO), A. Z. Bonanos (NOA), F. Haberl (MPE), D. Hatzidimitriou (UoA/NOA)

on 21 Nov 2018; 23:36 UT /

In ATel #12224 we reported the Hα emission, derived from a wide-field photometric survey of the Small Magellanic Cloud (Maravelias et al. 2017, IAUS 329, 373; Maravelias et al. 2019, in prep.), of the proposed optical counterpart source [M2002] 20671 to the X-ray transient XTE J0052-723 pulsar (SXP 4.78; Swift J005139.2-721704; ATel #12209). In addition to this clear detection, the work of Bonanos et al. (2010, AJ, 140, 416) showed that the IR colors of this source ([2dFS]0811; J=15.54 mag, J-[3.6]=0.56 mag) are indicative of a “photometric” Be star, defined as sources with an intrinsic color of JIRSF-[3.6]>0.5 mag.

However, to confirm the nature of the counterpart optical spectroscopy is needed. We obtained optical spectra using the LDSS-3 spectrograph on the 6.5m Clay/Magellan telescope (Las Campanas Observatory). The observations were performed on Nov. 20, 2018, acquiring two exposures of 600s each with a 1″ slit using the VPH-All grism (resulting in a 2630 — 10859 Å wavelength range, at a nominal dispersion of 1.9 Å/pix). The spectrum shows a clear single-peaked Hα line in emission, with a corresponding equivalent width of -10.65±0.14 Å. This is the first optical spectroscopic confirmation of the presence of Hα in emission. We note that Hβ appears in emission as well.

The spectral classification was based on the blue part of the spectrum and the classification scheme used in Maravelias et al. (2014, MNRAS, 438, 2005). The presence of the OII+CIII 4640-4650 blend and the strong HeI 4471 line point to an early-type star (spectral type up to B2), which is consistent with the absence of the MgII 4481 line and the weak SiII 4552 triplet line. The HeII 4200 and 4686 lines, which are indicative of B0.5 and earlier-spectral types, are absent, thus pointing to later types.

Combining these criteria we constrain the optical classification to a B1-2e source (with an error of 0.5 subtype). This is consistent with the early-type B star classification proposed in ATel #12229, as well as the previous classification of B0-B3 by Evans et al. (2004, MNRAS, 351, 601; source ID [2dFS]0811).

Thus, we provide the first optical spectrum with Hα emission of the optical counterpart of XTE J0052-723, further confirming its Be/X-ray binary nature.

ATel #12224: XTE J0052-723 (SXP 4.78; Swift J005139.2-721704), a newly identified Be/X-ray binary pulsar

The ATel #12224 was released on 17 Nov 2018 (19:01 UT) regarding the identification of the proposed optical counterpart to the source XTE J0052-723 (SXP 4.78; Swift J005139.2-721704) as an Hα emitting OB star. The full text follows.

ATel #12224; G. Maravelias (NOA), V. Antoniou (TTU/SAO), A. Zezas (UoC/SAO), A. Strantzalis (UoA), D. Hatzidimitriou (UoA), F. Haberl (MPE)

on 17 Nov 2018; 19:01 UT /

ATel #12209 reported the detection of a new X-ray transient in the Small Magellanic Cloud (SMC), Swift J005139.2-721704, exhibiting outbursting activity. The system has been classified as a new SMC high-mass X-ray binary based on its identification with the B-type star [M2002]20671. NICER followed up this source immediately (ATel #12219), reporting an absorption-corrected luminosity of LX ~7×1037erg s-1 (0.5-8 keV; 60 kpc). Temporal analysis of NICER and Fermi/GBM observations (ATel #12222) identified Swift J005139.2-721704 with the known X-ray pulsar XTE J0052-723 (SXP 4.78). Evans et al. (2004, MNRAS, 353, 601) obtained a refined B0-3(III) spectral type for [M2002]20671 (= [2dFS]0811) based on optical spectroscopy, but they do not report Hα emission.

Here, we report the identification of the SMC star [M2002]20671, and thus XTE J0052-723, with an Hα emitting source, which confirms XTE J0052-723 as a Be/X-ray binary (Be-XRB) pulsar in the SMC. This source is identified in Hα and R-band observations covering the SMC almost completely (Maravelias et al. 2017, IAUS 329, 373) using the Wide Field Imager on the 2.2m MPG/ESO telescope at La Silla (16/17 November 2011) and the MOSAIC-II camera on the 4m Blanco telescope at Cerro Tololo (15/16 December 2011).

The Hα emitting source is found at RA=00:51:38.78 and DEC=-72:17:04.7 (better than 0.2″ relative astrometry with respect to the 2MASS catalog). It is located 2.2″ away from the Swift position (ATel #12209), with Hα and R-band magnitudes equal to 15.476±0.006 and 15.613±0.008, respectively. The resulting Hα-R color is -0.137±0.010 mag with an SNR~13 above the continuum and an Hα excess significance of ~6σ above the Hα-R baseline value. The only nearby source with significant Hα-R excess is much fainter (Hα and R ~22 mag), has a lower SNR (~4) and is located at a larger distance from the X-ray source (~6″).

Observations with the IMACS f/2 camera on the 6.5m Magellan Telescope (4 October 2004) give B=15.652±0.009 mag and I=15.524±0.017 mag (Strantzalis et al. 2018, IAUS 344, 453; Strantzalis et al. 2019, in prep.), compatible with an OB star.

All the identifications described above secure the nature of Swift J005139.2-721704 = XTE J0052-723 = SXP 4.78 as Be-XRB pulsar in the SMC.

New Paper on BeXRBs – 5 new BeXRBs in the SMC and the link of the supergiant B[e] star LHA 115-S 18 with an X-ray source

Optical spectra of 5 new Be/X-ray Binaries in the Small Magellanic Cloud and the link of the supergiant B[e] star LHA 115-S 18 with an X-ray source

Grigoris Maravelias, Andreas Zezas, Vallia Antoniou, Despoina Hatzidimitriou

The Small Magellanic Cloud (SMC) is well known to harbor a large number of High-Mass X-ray Binaries (HMXBs). The identification of their optical counterparts provides information on the nature of the donor stars and can help to constrain the parameters of these systems and their evolution. We obtained optical spectra for a number of HMXBs identified in previous Chandra and XMM-Newton surveys of the SMC using the AAOmega/2dF fiber-fed spectrograph at the Anglo-Australian Telescope. We find 5 new Be/X-ray binaries (BeXRBs; including a tentative one), by identifying the spectral type of their optical counterparts, and we confirm the spectral classification of an additional 15 known BeXRBs. We compared the spectral types, orbital periods, and eccentricities of the BeXRB populations in the SMC and the Milky Way and we find marginal evidence for difference between the spectral type distributions, but no statistically significant differences for the orbital periods and the eccentricities. Moreover, our search revealed that the well known supergiant B[e] star LHA 115-S 18 (or AzV 154) is associated with the weak X-ray source CXOU J005409.57-724143.5. We provide evidence that the supergiant star LHA 115-S 18 is the optical counterpart of the X-ray source, and we discuss different possibilities of the origin of its low X-ray luminosity (Lx ~ 4 x 10^33 erg/s).

arXiv:1312.0593