Tag Archive


amateur astronomy awk bash be b[e] supergiant cartoon conference convert evolved star exoplanet fedora figaro fits fun galaxy history iraf jupiter latex linux lmc machine learning massive star matplotlib meteor mypaper paper peblo photometry planet pro-am pyraf python scisoft skinakas observatory small magellanic cloud smc spectroscopy starlink talk theli ubuntu university of crete video x-ray

New paper on the circumstellar environment of MWC 137

Resolving the circumstellar environment of the Galactic B[e] supergiant star MWC 137 from large to small scales

Michaela Kraus, Tiina Liimets, Cristina E. Cappa, Lydia S. Cidale, Dieter H. Nickeler, Nicolas U. Duronea, Maria L. Arias, Diah S. Gunawan, Mary E. Oksala, Marcelo Borges Fernandes, Grigoris Maravelias, Michel Cure, Miguel Santander-Garcia

The Galactic object MWC 137 was suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and the high velocity jet and knots, it is a rather atypical representative of this class. We performed multi-wavelength observations spreading from the optical to the radio regime. Based on optical imaging and long-slit spectroscopic data we found that the northern parts of the large-scale nebula are predominantly blue-shifted, while the southern regions appear mostly red-shifted. We developed a geometrical model consisting of two double-cones. While various observational features can be approximated with such a scenario, the observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy we studied the hot molecular gas in the close vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. While the disk itself cannot be spatially resolved, its emission is reflected by dust arranged in arc-like structures and clumps surrounding MWC 137 on small scales. In the radio regime we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south and west. No cold gas or dust were detected in the north and north-western regions. Despite the new insights on the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue.

2017, AJ, 154, 186 / NASA/ADS / arXiv.org: 1709.06439

New paper on Magellanic Supergiants – Disk tracing for B[e] supergiants in the Magellanic Clouds

Disk tracing for B[e] supergiants in the Magellanic Clouds

G. Maravelias, M. Kraus, A. Aret

B[e] supergiants are evolved massive stars with a complex circumstellar environment. A number of important emission features probe the structure and the kinematics of the circumstellar material. In our survey of Magellanic Cloud B[e] supergiants we focus on the [OI] and [CaII] emission lines, which we identified in four more objects.

arXiv:1507.08443

New Paper on BeXRBs – 5 new BeXRBs in the SMC and the link of the supergiant B[e] star LHA 115-S 18 with an X-ray source

Optical spectra of 5 new Be/X-ray Binaries in the Small Magellanic Cloud and the link of the supergiant B[e] star LHA 115-S 18 with an X-ray source

Grigoris Maravelias, Andreas Zezas, Vallia Antoniou, Despoina Hatzidimitriou

The Small Magellanic Cloud (SMC) is well known to harbor a large number of High-Mass X-ray Binaries (HMXBs). The identification of their optical counterparts provides information on the nature of the donor stars and can help to constrain the parameters of these systems and their evolution. We obtained optical spectra for a number of HMXBs identified in previous Chandra and XMM-Newton surveys of the SMC using the AAOmega/2dF fiber-fed spectrograph at the Anglo-Australian Telescope. We find 5 new Be/X-ray binaries (BeXRBs; including a tentative one), by identifying the spectral type of their optical counterparts, and we confirm the spectral classification of an additional 15 known BeXRBs. We compared the spectral types, orbital periods, and eccentricities of the BeXRB populations in the SMC and the Milky Way and we find marginal evidence for difference between the spectral type distributions, but no statistically significant differences for the orbital periods and the eccentricities. Moreover, our search revealed that the well known supergiant B[e] star LHA 115-S 18 (or AzV 154) is associated with the weak X-ray source CXOU J005409.57-724143.5. We provide evidence that the supergiant star LHA 115-S 18 is the optical counterpart of the X-ray source, and we discuss different possibilities of the origin of its low X-ray luminosity (Lx ~ 4 x 10^33 erg/s).

arXiv:1312.0593