Tag Archive

amateur astronomy awk bash be b[e] supergiant cartoon conference convert exoplanet fedora figaro fits fun galaxy history iraf jupiter latex linux lmc massive star matplotlib meteor mypaper ondrejov observatory optical paper peblo photometry planet pro-am pyraf python scisoft skinakas observatory small magellanic cloud smc spectroscopy starlink talk theli ubuntu university of crete video x-ray

EAS 2021 poster contributions

Three poster contributions during EAS 2021 with the following … statistics: all of them on massive stars,  two within the framework of the ASSESS project, and two on machine-learning applications.

1. Applying machine-learning methods to build a photometric classifier for massive stars in nearby galaxies

Grigoris Maravelias, Alceste Bonanos, Frank Tramper, Stephan de Wit, Ming Yang, Paolo Bonfini

Mass loss is a key parameter in the evolution of massive stars. Despite the recent progress in the theoretical understanding of how stars lose mass, discrepancies between theory and observations still hold. Even worse, episodic mass loss in evolved massive stars is not included in the models while the importance of its role in the evolution os massive stars is currently undetermined. A major hindrance to determining the role of episodic mass loss is the lack of large samples of classified stars. Given the recent availability of extensive photometric catalogs from various surveys spanning a range of metallicity environments, we aim to remedy the situation by applying machine learning techniques to these catalogs.We compiled a large catalog of known massive stars in M31 and M33, using IR (Spitzer) and optical (Pan-STARRS) photometry, as well as Gaia astrometric information. We grouped them in 7 classes (Blue, Red, Yellow, B[e] supergiants, Luminous Blue Variables, Wolf-Rayet, and outliers, e.g. QSO’s and background galaxies). Using this catalog as a training set, we built an ensemble classifier utilizing color indices as features. The probabilities from three machine-learning algorithms (Support Vector Classification, Random Forests, Neural Networks) are combined to obtain the final classifications. The overall performance of the classifier is ~87%. Highly populated (Red/Blue/Yellow Supergiants) and well-defined classes (B[e] Supergiants) have a high recovery rate between ~98-74%. On the contrary, Wolf-Rayet sources are detected at ~20% while Luminous Blue Variables are almost non-existent. The is mainly due to the small sample sizes of these classes, although M31 and M33 have spectral classifications for several massive stars (about 2500). In addition, the mixing of spectral types, as there are no strict boundaries in the features space (color indexes) between those classes, complicates the classification. In an independent application of the classifier to other galaxies (IC 1613, WLM, Sextans A) we obtained an overall accuracy of ~71% despite the missing values on their features (which we replace with averaged values from the training sample). This approach results only in a few percent difference, with the remaining discrepancy attributed to the different metallicity environments of their host galaxies. The classifier’s prediction capability is only limited by the available number of sources per class, reflecting the rarity of these objects and the possible physical links between these massive star phases. Our methodology is also efficient in correctly classifying sources with missing data and at lower metallicities, making it an excellent tool for spotting interesting objects and prioritizing targets for observations. Future spectroscopic observations will offer a test-bed of its actual performance along with opportunities for improvement.

For more see this k-poster (submitted for SS32: Machine Learning and Visualisation in Data Intensive Era ).

2. A new automated tool for the spectral classification of OB stars

E. Kyritsis, G. Maravelias, A. Zezas, P. Bonfini, K. Kovlakas, P. Reig

As more and more large spectroscopic surveys become available, an automated approach in spectral classification becomes necessary. Due to the importance of the massive stars it is of paramount importance to identify the phenomenological parameters of these stars (e.g., the spectral type ) which can be used as proxies to their physical parameters (e.g mass, temperature).
In this work, we use the Random Forest (RF) algorithm to develop a tool for automated spectral classification of the OB-type stars into their sub-types. We use the regular RF algorithm, the Probabilistic RF (PRF) which is an extension of RF that incorporates uncertainties, and we introduce the KDE – RF method which is a combination of the Kernel-Density Estimation and the RF algorithm. We train the algorithms on the Equivalent Width (EW) of characteristic absorption lines measured in the spectra from large Galactic (LAMOST, GOSSS) and extragalactic surveys (2dF, VFTS) with available spectral-type classification. By following an adaptive binning approach we group the labels of these data on 11 sub-types within the range O3-B9. We examined which of the characteristic spectral lines (features) are more important to use based on a number of feature selection methods and we searched for the optimal hyper-parameters of the classifiers, to achieve the best performance.
From the feature screening process, we find 13 spectral lines as the optimal number of features. We find that the overall accuracy score is ~ 76 % with similar results across all approaches, with our KDE – RF being slightly lower at ~ 73 %. In addition, we show that our optimized RF model can reach an overall accuracy score of ~ 85 % in the ideal case of robust measurement of the weakest characteristic spectral lines. We apply our model in other observational data sets providing examples of potential application of our classifier on real science cases. We find that it performs well for both single massive stars and for the companion massive stars in Be X-ray Binaries, especially for data with S/N in the range 50-300. Furthermore, we present an alternative model for lower quality data S/N < 25 based on a reduced feature-set classification scheme, including only the strongest spectral lines.
The similarity in the performances of our models indicates the robustness and the reliability of the RF algorithm when used for spectral classification of early-type stars. This is strengthened also by the fact that we are working with real-world data and not with simulations. In addition, the approach presented in this work is very fast and applicable to products from different surveys in terms of quality (e.g different resolutions) and of different formats (e.g., absolute or normalized flux).

For more see this k-poster (submitted for S16: Massive stars: birth, rotation, and chemical evolution).

3. Evolved massive stars in the Magellanic Clouds

Ming Yang, Alceste Bonanos, Biwei Jiang, Jian Gao, Panagiotis Gavras, Grigoris Maravelias, Man I Lam, Shu Wang, Xiaodian Chen, Yi Ren, Frank Tramper, Zoi Spetsieri

We present two clean, magnitude-limited (IRAC1 or WISE1≤15.0 mag) multiwavelength source catalogs for the Large and Small Magellanic Cloud (LMC and SMC). The catalogs were built by crossmatching (1”) and deblending (3”) between the source list of Spitzer Enhanced Imaging Products (SEIP) and Gaia Data Release 2 (DR2), with strict constraints on the Gaia astrometric solution in order to remove the foreground contamination. It is estimated that about 99.5% of the targets in our catalog are most likely genuine members of the LMC and SMC. The LMC catalog contains 197,004 targets in 52 different bands, while SMC catalog including contains 45,466 targets in 50 different bands, ranging from the ultraviolet to the far-infrared. Additional information about radial velocities and spectral and photometric classifications were collected from the literature. For the LMC, we compare our sample with the sample from Gaia Collaboration et al. (2018), indicating that the bright end of our sample is mostly comprised of blue helium-burning stars (BHeBs) and red HeBs with inevitable contamination of main sequence stars at the blue end. For the SMC, by using the evolutionary tracks and synthetic photometry from MESA Isochrones & Stellar Tracks and the theoretical J-Ks color cuts, we identified and ranked 1,405 red supergiant (RSG), 217 yellow supergiant (YSG), and 1,369 blue supergiant (BSG) candidates in the SMC in five different color-magnitude diagrams (CMDs), where attention should also be paid to the incompleteness of our sample. For the LMC, due to the problems with models, we applied modified magnitude and color cuts based on previous studies, and identified and ranked 2,974 RSG, 508 YSG, and 4,786 BSG candidates in the LMC in six CMDs. The comparison between the CMDs from the two catalogs of the LMC SMC indicates that the most distinct difference appears at the bright red end of the optical and near-infrared CMDs, where the cool evolved stars (e.g., RSGs, asymptotic giant branch stars, and red giant stars) are located, which is likely due to the effect of metallicity and star formation history. A further quantitative comparison of colors of massive star candidates in equal absolute magnitude bins suggests that there is essentially no difference for the BSG candidates, but a large discrepancy for the RSG candidates since LMC targets are redder than the SMC ones, which may be due to the combined effect of metallicity on both spectral type and mass-loss rate as well as the age effect. The effective temperatures (Teff) of massive star populations are also derived from reddening-free color of (J-Ks). The Teff ranges are 3500≤Teff≤5000 K for an RSG population, 5000≤Teff≤8000 K for a YSG population, and Teff≥8000 K for a BSG population, with larger uncertainties toward the hotter stars.

For more see this k-poster (submitted for S16: Massive stars: birth, rotation, and chemical evolution).

New paper: The yellow hypergiant – B[e] supergiant connection

Our most recent work comes as a proceedings paper for the conference “Stars: from collapse to collapse” (Special Astrophysical Observatory, Nizhnij Arkhyz, Karachai-Cherkessian Republic, Russia, 3-7 October 2016):

The yellow hypergiant – B[e] supergiant connection

A. Aret, M. Kraus, I. Kolka, G. Maravelias

B[e] supergiants and yellow hypergiants share a number of common properties regarding their circumstellar environments. Using the forbidden [O I] and [Ca II] lines as disk tracers, we suggest the presence of a Keplerian disk or ring around the yellow hypergiant V509 Cas and confirm the pole-on inner disk around V1302 Aql. These findings indicate a change in mass-loss behavior from spherical in cooler yellow hypergiants to axisymmetric in the hotter ones during the passage through the Yellow Void. The accumulation of material in the equatorial plane reminds of the disks of B[e] supergiants, supporting the suggestion that yellow hypergiants might appear as B[e] supergiants after they reach the blue edge of the yellow instability domain.

arXiv: 1611.06044

The B[e] stars conference in Prague

During the last week I was traveling from Ondrejov forth and back to the “The B[e] Phenomenon: Forty Years of Studies”, in Prague (27 June – 1 July 2016). It was a nice conference with many interesting talks, and fruitful discussions. Most importantly, I met some old friends and made new ones! I was fortunate enough to contribute to this conference with a number of works that follow.

1. “B[e] Supergiants’ circumstellar environment: disks or rings?”
G. Maravelias, M. Kraus, A. Aret, L. Cidale, M. L. Arias, M. Borges Fernandes

B[e] Supergiants are a phase in the evolution of some massive stars for which we have observational evidence but no predictions by any stellar evolution model. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dust regions usually found in rings or disk-like structures. However, the structure and the formation of this circumstellar environment is not well-understood, which means that further investigation is needed. To address that, we obtained high-resolution optical and near-infrared spectra (using MPG-ESO/FEROS, GEMINI/Phoenix and VLT/CRIRES, respectively) for a number of Galactic B[e]SGs. We examined the [OI] and [CaII] emission lines and the CO bandheads to probe the structure and the kinematics of their formation regions. We find that these emission lines form either in a single or in multiple equatorial rings, a probable result of previous mass-loss events.

    link to site | local file

2. “Similarities in the structure of the circumstellar environments of B[e] supergiants and yellow hypergiants”
A. Aret, I. Kolka, M. Kraus, G. Maravelias

Despite their different evolutionary phases, B[e] supergiants and yellow hypergiants share
a number of common properties regarding their circumstellar environments. Both types of stars experience phases of strongly enhanced mass-loss, and the released material accumulates in (multiple) shells, bipolar nebulae, and/or disk-like structures, often veiling the central object. Moreover, the physical conditions in the envelopes of these stars are ideal for molecule and dust condensation. While the enhanced mass-loss and eruptions in yellow hypergiants are probably caused by an increased pulsation activity, the physical mechanism leading to the formation of the dense winds and Keplerian disks observed in B[e] supergiants is still unclear. Recently, we performed an optical spectroscopic survey of a large sample of Galactic emission-line stars in diverse evolutionary states. This survey was aimed at identifying characteristic emission features that help to study the structure and kinematics of the circumstellar environments of different types of evolved massive stars, including several yellow hypergiants and a number of B[e] stars in different evolutionary phases. Motivated by the results from previous studies, we focused on the strategic forbidden emission lines of [OI] and
[CaII], which are considered as ideal tracers for circumstellar disks. Interestingly, we identified both sets of lines in most of the yellow hypergiants in our sample, while from the B[e] star sample only the supergiants displayed these features. This indicates that the physical conditions in the environments of both types of stars (yellow hypergiants and B[e] supergiants) could be similar. In particular, the double-peaked emission lines of [CaII] observed in the yellow hypergiants of earlier spectral type suggest that these stars possibly possess a dense circumstellar ring or disk-like structure alike their hotter B[e] supergiant counterparts.

    link to site | local file

3. “Clumpy molecular structures revolving the B[e] supergiant MWC 137”
M. Kraus, L. S. Cidale, T. Liimets, D. S. Gunawan, C. E. Cappa, M. E. Oksala, M. L. Arias, G. Maravelias, M. Borges Fernandes, M. Cure

The Galactic object MWC 137 is a peculiar early-type star surrounded by the optical nebula Sh 2-266 (80″ × 60″) of unclear origin. The large-scale structure seen in Hα images suggests that Sh 2-266 is a ring nebula probably produced by the interaction of the stellar winds with the ambient medium, with a possible bipolar outflow perpendicular to the ring/disk plane. A collimated outflow with several knots was indeed recently detected in the light of the [N II] 6583 line. Moreover, near-infrared spectroscopic observations displayed intense, kinematically broadened CO band emission in both isotopes 12CO and 13CO. The observed enrichment in 13CO implies that MWC 137 is an evolved object. This result combined with the high luminosity of the star suggests that it belongs to the group of B[e] supergiants. To investigate the physical conditions and spatial distribution of the hot molecular gas we obtained K-band IFU observations with the ESO/SINFONI spectrograph in its high spatial resolution mode in two different seasons. In addition, to map the cold molecular gas regions, we collected molecular line observations in the sub-mm range with APEX. We find that the molecular gas is distributed on multiple clumpy ring structures. These rings are more or less perpendicular to the jet axis, and the material is revolving the central object on (quasi-)Keplerian orbits.

    link to site | local file

4. “A new outburst of the yellow hypergiant star ρ Cas”
A. Aret, M. Kraus, I. Kolka, G. Maravelias

Yellow hypergiants are massive stars that have passed through the red-supergiant phase and evolve back bluewards in the Hertzsprung-Russell diagram. It has been suggested that these stars may be evolving toward the B[e] supergiant phase. Such a possible evolutionary link should be investigated.
In 2011, we started to monitor spectroscopically several yellow hypergiants using the Ondrejov 2m telescope. The aim of this campaign is to track and to study their mass ejection phases. One of the objects we monitor is ρ Cas. This star is famous for its historical and recent outbursts, during which the star develops TiO bands in a cool, optically thick wind with a very brief but high mass-loss rate (3 × 10−2 M in 200 days). Each outburst is accompanied by a drop in the light curve of more than one magnitude. At least three such outbursts were recorded for ρ Cas: 1945-1947, 1985-1986, and 2000-2001. Our spectroscopic data show that during 2013, another outburst occurred, which is obvious from the development of pronounced TiO bands. Also many atmospheric lines characteristic for a later spectral type appear. Moreover, the photometric light curve displays a drop by about 0.6 mag during the same period. While the total mass loss connected with this recent outburst was probably less violent, the decrease of the time interval between the outbursts might indicate that ρ Cas is preparing for its passage through the Yellow Void region towards the hot side of the Hertzsprung-Russell diagram.

    link to site | local file

UPDATE 6 Aug 2016: As the organizers have uploaded all talks and posters at their website, I also added here the corresponding links and files.

UPDATE 10 Oct 2016: You can find the proceedings paper on arXiv: 1610.00607 (Maravelias et al.)

UPDATE 24 Oct 2016: You can find Kraus et al. proceedings paper on arXiv: 1610.05596

UPDATE 15 Nov 2016: Aret et al. proceedings papers became also available in arXiv: arXiv: 1611.04490 (on similarities between B[e]SGs and YHGs and arXiv: 1611.04493 (on YHG rho Cas).